

ELF HTX 835 15W-40

100% synthetic lubricant for competition engines

Uses

- **ELF HTX 835** is a multigrade lubricant specially developed for 4-stroke petrol engines.
- **ELF HTX 835** is designed for engine performance in runs of short and medium duration.
- Due to its level of viscosity when hot (W-40), ELF HTX 835 reduces wear on moving mechanical parts.
- **ELF HTX 835** is used for the following applications:
 - o 4-stroke naturally-aspirated and turbocharged petrol engines, up to 13,000 rpm.
- **ELF HTX 835** is perfectly suited for competitions of short and average length:
 - o Circuit
 - o Hill climb
 - o Rally

Characteristics

	Typical values	Units	Methods
Density at 15°C	0.8535	g/ml	ASTM D-1298
Viscosity at 40°C	91	mm²/s	ASTM D-445
Viscosity at 100°C	15.2	mm²/s	ASTM D-445
Viscosity HTHS	4.0	mPa.s	ASTM D-4741
De-airing 75°C (volume of air absorbed)	1.7	% vol.	ASTM D-3427
Flash point	224	°C	ASTM D-92

100% synthetic lubricant for competition engines

Properties

CHARACTERISTICS	\rightarrow	TECHNICAL GAINS	\rightarrow	ENGINE BENEFITS
Choice of synthetic reversible shear copolymer	\rightarrow	Less energy lost through viscous friction	\rightarrow	Spontaneous power gain
Relatively high viscosity (15W-40)	\rightarrow	Rapid lubrication of engine parts	\rightarrow	Mechanical parts protected by oil coat
		Excellent heat evacuation		Lowers temperatures at piston top
Organic-metallic detergency additive and synthetic copolymer content optimised	\rightarrow	Cleans and keeps clean all shells, pistons, segments	\rightarrow	Maintains top performance throughout the run
Optimised formulation matrix	\rightarrow	High de-airing capacity	\rightarrow	Perfect lubrication of mechanical parts
				Greater compatibility with dry sump type technologies
Organic-metallic anti-wear additive	\rightarrow	Adsorption on metal areas subject to very high pressure like tappets, cams and bearings	\rightarrow	Greater engine protection with impeccable reliability
Dispersion surfactant	\rightarrow	Carbonaceous matter kept in suspension	\rightarrow	Reduces clogging of filters on endurance
Mineral base content strictly zero	\rightarrow	Increase in thermal resistance	\rightarrow	Reliability gain

ELF HTX 8xx

ELF HTX 835 is miscible in any proportion with **ELF HTX 805** (5W50), **ELF HTX 825** (10W-60), **ELF HTX 3818** (5W-30), **ELF HTX 3821** (0W-30) and **ELF HTX 3825** (0W-20).

100% synthetic lubricant for competition engines

In the ELF HTX 8xx range, **ELF HTX 835** is the most performance-geared lubricant.

For even more significant power gains for short and/or very short runs, we recommend the **ELF HTX 38xx** range.

Recommendations

- **ELF HTX 835** works perfectly up to 13,000 rpm.
- Compatibility with the materials of the lubrication circuit:
 - No known incompatibility to date
 - o Compatible in particular with silicon, fluorine, acrylic and nitrile type joints
- There is no specific precaution to take on first use of ELF HTX 835 other than removing the previous lubricant and replacing the oil filter.
- The use of an external additive (like engine remetalling) is not recommended.

Storage

To preserve its original properties, **ELF HTX 835** must be handled and stored away from extreme weather conditions. The can must be carefully closed again after each use.

Glossary

100% SYNTHETIC:

Unlike certain lubricants on the market bearing the synthetic label, **ELF HTX 835** really contains no mineral base.

DE-AIRING:

Level of air the lubricant may absorb and capacity to eliminate it.

SHEAR:

Distortion of lubricant when subjected to high speeds and loads.

VISCOSITY HTHS (High Temperature/High Shear):

Viscosity measured at High Temperature (150°C) and High Shear (10⁶ s⁻¹).

